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Fluctuating circulation forced by unsteady
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In this paper, we consider nearshore rotational currents directly forced by unsteady
multidirectional wave breaking. Scaling relationships, simplified analytical solutions,
and asymptotic limits are developed for the maximum forced cross-shore and
longshore velocities. In all cases, forced longshore velocities are considerably larger
than cross-shore velocities. On longshore-uniform beaches, strong fluctuating velocities
are found for (i) large waves; (ii) strong directional spreading; and (iii) short peak
wave periods. When topographic inhomogeneities control longshore scales of wave
breaking, overall scaling changes and the largest fluctuating velocities are found for
(a) large waves; (b) long wave periods; and (c) topographic features that vary quickly
in the longshore direction. The ratio of fluctuating rotational velocities to mean
longshore current does not depend on the wave height or period, but instead on the
bottom friction, slope, deep water wave angle, and details of the wave spectrum.

1. Introduction
Even casual observation of waves at a beach reveals that breaking is unsteady in

both space and time. This unsteady breaking, which is tied to short-wave groups,
generates both irrotational low-frequency waves and rotational low-frequency
circulation. While there has been considerable study of irrotational low-frequency
waves (Longuet-Higgins & Stewart 1962; Foda & Mei 1981; many others), there has
been very little work on rotational motions generated by unsteady breaking waves,
which have never even received a basic scaling analysis. This is despite the presumed
importance of rotational motions in phenomena such as dangerous ‘migrating rip
currents’ (Fowler & Dalrymple 1990), and large-scale Reynolds stresses which will
affect the mean current profile.

This neglect of rotational motions is partly because of the difficulty in measuring
instantaneous vorticity using a sparse array of fixed instruments, but is also because
the widely used theory of radiation stresses (Longuet-Higgins & Stewart 1964) makes
it difficult to separate rotational forcing from irrotational forcing. However, recent
theoretical developments have demonstrated that dissipation-based forcing, which is
tied to the rate of generation of circulation (Peregrine 1998, 1999; Bühler & Jacobson
2001; Brocchini et al. 2004), is very useful in estimating the available rotational forcing.

In this paper, we develop scaling relations and simplified analytical solutions for
nearshore rotational motions forced by breaking wave groups. Dimensional examples
show that the strength of these motions varies strongly depending on characteristics
of the incident wave spectrum and can range from insignificant to strong.
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2. Scaling for circulation generated by unsteady breaking waves
Over an unsteady circulation cell, scaling for the rotational velocities forced directly

by unsteady breaking waves has three components: a rate of generation of circulation,
(DΓ/Dt)0 (where the circulation Γ ≡

∮
(u, v)dl), a forcing frequency, �f , and a length

scale which may be different for cross-shore and longshore motions, L0. Given these,
the velocity scaling is

O(u, v) = O

((
DΓ

Dt

)
0

1

�f L0

)
(2.1)

where (u, v) are the rotational fluctuating cross-shore and longshore velocities,
respectively. Characteristic time scales may be linked directly to the incident wave
spectrum by replacing the infinite array of second-order subharmonic frequencies
with one characteristic frequency

O(�f ) = O(δf fp) (2.2)

where fp is the peak wave frequency, and δf is presumed to be small. Thus, a narrow
swell spectrum would have a low value of δf when compared to a more broad-banded
wind sea.

For waves breaking all the way to the shoreline, scaling for the maximum rate of
generation of circulation can be found from Brocchini et al. (2004, equation (2.21) or
(2.23)) as

O

((
DΓ

Dt

)
0

)
= O(gHb), (2.3)

where Hb is a representative breaking wave height.
The characteristic length scale, L0, may be different for the cross-shore and

longshore coordinates in much the same way that horizontal and vertical velocity
scales vary for linear waves in shallow water. This scale will also change if the beach
topography changes from longshore-uniform to longshore-varying. These differences
are significant and can change strongly the system response.

2.1. Longshore-uniform beaches

On a longshore-uniform beach, all length scales parallel to the shoreline are determined
entirely from the incident wave spectrum. A representative longshore wavenumber
for waves with a deep water mean direction of θ0 from the shore normal may be
found from geometry and the deep water dispersion relation k0 = f 2

p /g as

O(�k) = O

(
δk cos θ0

f 2
p

g

)
(2.4)

where δk is a presumed small number which represents the directional width of the
wave spectrum. From Snell’s law, longshore wavenumbers on a longshore-uniform
beach are conserved, so this scaling remains valid in all depths.

If longshore and cross-shore scales are the same, then the velocity scaling becomes

O(u, v) = O

(
gHb�k

δf fp

)

= O

(
Hbfp

δk cos θ0

δf

)
, (2.5)

If longshore distances 2π/�k are large when compared to the cross-shore distance
xc, which scales with surf zone width (�kxc � 1), then boundary-layer-type scaling
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applies for the cross-shore velocity, u

O(u) = O(�kxcv)

= O

(
H 2

b f 3
p

gm

δ2
k cos2 θ0

δf

)
, (2.6)

where m is a representative bottom slope so that O(h) = O(mx), and the scaling for v

remains the same. As we will see, this scaling for u is applicable to many typical cases,
although there are instances where cross-shore and longshore scales are comparable
and (2.5) is more appropriate.

Thus, rotational velocities on longshore-uniform beaches forced by unsteady
multidirectional waves are predicted to be most significant for

(a) large waves,
(b) a large deep water directional width compared to spectral width,
(c) mean wave directions close to the shore normal, and
(d) higher frequency wind waves.

The first three items might be expected, but the fourth is a surprise. Rotational
velocities on open beaches are larger for higher frequency waves because longshore
group length scales increase with the square of the wave period but group frequencies
decrease only with the inverse of the wave period. A notable omission from (2.5) is
the beach slope m: fluctuating longshore velocities are quite insensitive to slope, while
for small kxc, (2.6) predicts the cross-shore velocity to decrease with increasing slope.

Local storm waves, which often have relatively small periods, wide directional and
frequency distribution, and large heights, thus appear likely to have large fluctuating
velocities. Bi-directional spectra, which may have a large directional width with a
relatively narrow frequency spectrum, are predicted to have large velocities. Swell
waves, with low spreading and peak frequencies, are not. For small �kxc (large
longshore length scales), directly forced cross-shore velocities appear to be small.

2.2. Bathymetric non-uniformities

On many beaches, there are strong bathymetric non-uniformities in the longshore
direction with typical length scale 2π/kt . If bathymetric length scales are small
compared to the longshore wave group length scales, i.e. kt � δk cos θ0k0, then these
topographic variations will control the length scales of wave breaking. A typical
example would be a topographically controlled rip current, where the rip channel
width is often small compared to longshore wave group scales.

This can result in large changes in unsteady velocity scaling when compared to the
longshore-uniform case. Using this new length scale, which is assumed to be small
enough that longshore and cross-shore velocity scales are similar,

O(u, v) = O

(
gHbkt

δf fp

)
. (2.7)

Thus when topographic length scales dominate, unsteady velocity fluctuations increase
with increasing wave group period (decreasing wave group frequency). This is opposite
from what was found on longshore-uniform beaches; the underlying reason for this
great difference is that length scales on longshore-uniform beaches change with wave
period, while the scales on longshore-varying topographies are fixed. A similar result
for longshore-varying topographies was previously found by Kennedy (2003) using
a simple discrete vortex model, and agrees with anecdotal evidence that topographic
rip currents are more dangerous with longer period swell waves (Lascody 1998).
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3. Analytic flow field for longshore-periodic vorticity
To complement and test the scaling relations of the previous section, it is useful to

develop a simplified solution which can give the rotational velocity field for forcing
with specified length and time scales. Here, we develop the simplest possible solution:
a planar beach with depth h = mx, where h,x = m is the beach slope, h,y = 0, and
periodic longshore velocities. This is quite obviously approximate, much like the
triangular longshore current of Longuet-Higgins (1970a). Still, it provides a good first
step towards understanding the kinematics of rotational nearshore flows. Solutions
are similar in character to the steady rip current solution for linear bottom friction
given by Bowen (1969) and also have some similarity with additional solutions in
Bowen’s (1967) thesis†, although details are different.

We define a transport stream function ψ so that

u = −ψ,y

h
, v =

ψ,x

h
(3.1)

where h is the depth and ,(−) denotes differentiation in the (−)-coordinate.
For a solution which is periodic in y with wavenumber k, so that ψ = f (x)/

2 exp iky + c.c., the relation on a planar beach with vorticity ω ≡ v,x − u,y =ω0/

2 exp iky + c.c. then becomes

xf,xx − f,x − k2xf = mω0x
2. (3.2)

The general solution to this is

f = C1xI1(kx) + C2xK1(kx) +
mπω0

2k2
xL1(kx) (3.3)

where C1 and C2 are arbitrary constants, I1 and K1 are modified Bessel functions,
and L1 is a modified Struve function (Abramowitz & Stegun 1964, ch. 9, 12).

In this form, the solution is not immediately useful, as no flows are possible with
vorticity in the nearshore and no vorticity in deeper water. To overcome this, we
divide into two regions: 0 � x � xc with vorticity ω =ω0/2 exp iky + c.c.; and x > xc

with zero vorticity. By employing matching conditions for the stream functions and
velocities at the boundary x = xc, and ensuring that the solution goes to ψ = 0 at
x = 0 and x = ∞ (zero flow through onshore or offshore boundaries, or between cells),
the stream function becomes

ψ = 1
2

[
C1xI1(kx) +

mω0π

2k2
xL1(kx)

]
exp iky + c.c., x � xc,

ψ = 1
2
C2xK1(kx) exp iky + c.c., x > xc,


 (3.4)

where

(C1, C2) =
mxcω0π

2k
(A1, A2) (3.5)

and

A1 = −L1(kxc)K0(kxc) − L0(kxc)K1(kxc),

A2 = L1(kxc)I0(kxc) − L0(kxc)I1(kxc),

}
(3.6)

† Thanks to an anonymous referee for pointing this out.
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Figure 1. Undistorted velocity field of arbitrary amplitude caused by the longshore-periodic
generation of vorticity. (a) kxc = π; (b) kxc = π/2; (c) kxc = π/4.

The velocities can then be found as

u = − i

2

[
C1

k

m
I1(kx) +

ω0π

2k
L1(kx)

]
exp iky + c.c., x � xc,

u = − i

2
C2

k

m
K1(kx) exp iky + c.c., x > xc,


 (3.7)

and

v = 1
2

[
C1

k

m
I0(kx) +

πω0

2k
L0(kx)

]
exp iky + c.c., x � xc,

v = − 1
2
C2

k

m
K0(kx) exp iky + c.c., x > xc,


 (3.8)

This solution makes use of identities for derivatives of modified Bessel functions and
modified Struve functions as found in Abramowitz & Stegun (1964).

Figure 1 gives velocity fields for three different aspect ratios. Two properties appear
most striking: (i) longshore velocities dominate over cross-shore velocities as kxc

becomes small; and (ii) longshore velocities shoreward of x = xc are much stronger
than velocities seaward of x = xc for small kxc. The first was predicted in (2.6) from
boundary layer arguments but the strong relative decrease in u remains notable. The
second again might be expected mathematically, but the concentration of velocities
toward the shoreline for kxc � 1 is very strong. Qualitatively, these also resemble the
steady rip currents given by Bowen (1969), which used different assumptions. Thus,
the presence of the shoreline appears to provide a strong constraint on the form of
any nearshore circulation cell, regardless of the details.
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The total circulation over one half of a circulation cell pair may be found from
Green’s theorem as

Γ ≡
∫∫

ω dA (3.9)

where ω is the vorticity and dA represents integration over the circulation cell area,
and thus

ω0 =
Γ k

2xc

. (3.10)

When longshore length scales are long compared to cross-shore scales (kxc � 1),
the modified Bessel and Struve functions can be simplified (Abramowitz & Stegun
1964) so that maximum velocities become

u =
3Γ k

32
(kxc), v =

Γ k

2
. (3.11)

These have O(u/v) = O(kxc) and thus agree with the scaling relations in § 2 for small
kxc. Maximum cross-shore velocities are found at x =3xc/4 and maximum longshore
velocities are found at x = 0.

3.1. Alternative analytical solution

Details of the velocity field described above depend on the distribution of vorticity,
which was determined fairly crudely. Because of this, we offer another analytical
solution to test the sensitivity of maximum velocities to the detailed vorticity
distribution. The alternative solution has all vorticity concentrated in a delta function
at x = xc so that ω = ω0/2δ(x − xc) exp(iky) + c.c., where δ(x − xc) is the Dirac delta
function, and has a stream function given by

ψ = 1
2
C3xK1(kxc)I1(kx) exp iky + c.c., x � xc,

ψ = 1
2
C3xI1(kxc)K1(kx) exp iky + c.c., x > xc,

}
(3.12)

where

C3 =
Γ mkxc

2
. (3.13)

For any flow field, the maximum longshore and cross-shore velocities always occur
at x = xc, and are given as

umax = 1
2
kxcΓ kK1(kxc)I1(kxc),

vmax = 1
2
kxcΓ kK1(kxc)I0(kxc),

}
(3.14)

These locations of maximum velocity differ significantly from the previous section.
Thus, it would seem that the location of maximum fluctuating velocities may difficult
to predict accurately without a more sophisticated model.

For kxc � 1, asymptotic maximum velocities are

u =
Γ k

2

kxc

2
, v =

Γ k

2
. (3.15)

This asymptotic longshore velocity v is the same as found in (3.11), but the cross-
shore velocity u in (3.15) is much greater. Thus, it appears that the magnitude of
the fluctuating longshore velocity is less sensitive to the detailed vorticity distribution
than the cross-shore velocity.

3.2. Dimensional examples

Scaling relationships may be tested against the analytical velocity field using typical
dimensional quantities. In this way, we may determine situations in which unsteady
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Figure 2. Maximum longshore (−−) and cross-shore (−) velocities from (3.7)–(3.8); and
asymptotic limits (· · ·) (3.11) from unsteady multidirectional wave forcing using a simplified
two-component model with circulation calculated from (3.16)–(3.17). Base case: Tp = 8 s,
m= 0.03, �k = 0.2κ0, θ0 = 0, �f = 0.2fp , Hb = 1 m, γ = 0.78. (a) Changing peak period;
(b) changing breaking wave height.

multidirectional waves are likely to cause significant rotational velocity fluctua-
tions.

In line with the simplified analytical representation of flow and with the scaling,
we represent an incident wave spectrum using a single subharmonic wavenumber �k =
δkk0 cos θ0 and frequency �f = δf fp . The rotational response at this wavenumber/
frequency pair is taken as representative of the entire spectrum. Of course this
is a gross simplification but, because there are no leading-order resonances which
might concentrate energy at preferred wavenumber-frequency combinations, it should
provide a useful estimate of the directly forced fluctuating velocity field.

This solution may be an upper bound on fluctuating velocities for two reasons:
(i) bottom friction is not included; and (ii) the fluctuating rate of generation of
circulation will be assumed to have an amplitude equal to the mean rate of generation
of circulation, (DΓ/Dt)0, and to not vary in phase through the surf zone. Accounting
for these would reduce velocities, but including them in a simple analytical solution
is beyond the scope of this paper.

We estimate the rate of generation of circulation from Brocchini et al. (2004).
For waves breaking on a planar beach through to the shoreline, type (ii) breaking
(H = γ h) appears the most appropriate estimate:

DΓ

Dt0
=

5g

16
γHb (3.16)

where γ is the ratio of wave height to water depth at breaking, γ = H/h. The
fluctuating rate of generation of circulation is thus taken as

DΓ

Dt
=

1

2

DΓ

Dt0

exp i(�ky + 2π�f t) + c.c. (3.17)

This has the form of a progressive wave, but maximum velocities are identical if the
forcing is taken to be a standing wave.

The base case here is taken as a wave of moderate height and period on a mildly
sloping beach: Tp = 8 s, m =0.03, �k =0.2k0 cos θ0, θ0 = 0, �f = 0.2fp , Hb = 1 m,
γ = 0.78.

Figure 2 shows how maximum velocities vary with peak period and wave height.
Both longshore and cross-shore velocities decrease strongly with increasing period:
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Figure 3. As figure 2 but for (a) changing beach slope; (b) changing directional spreading.

this occurs because of the strong increase in longshore length scales (decrease in �k).
The full relations are seen to agree well with the asymptotic limits for large period,
but diverge for short periods as longshore and cross-shore length scales become
comparable. The base case, with Tp = 8 s, appears on the edge of applicability for the
asymptotic relations. Longshore velocities appear significant over a wide range while
cross-shore velocities are negligible for large wave periods.

Both cross-shore and longshore velocities increase strongly with increasing wave
height, as expected. Again, divergence from the asymptotic limits is seen as larger
breaking waves change the aspect ratio of the circulation cell.

Figure 3 predicts a weakly changing longshore velocity with increasing beach
slope m, while cross-shore velocities diminish strongly with increasing steepness.
Increased directional spreading causes strong increases in fluctuating velocities-again,
this suggests that wave spectra with two peak directions but similar frequencies will
cause strong ‘migrating rip currents’ (Fowler & Dalrymple 1990).

4. Mean currents
From Longuet-Higgins (1970a, b), the maximum longshore current on a longshore-

uniform beach scales like

O(V ) = O

(
gmhb

cf

sin θ

C

)

= O

(
gHbm

cf

fp sin θ0

g

)

= O

(
Hbfp sin θ0

m

cf

)
(4.1)

where cf is the bottom friction coefficient, θ0 is the deep water wave angle relative
to the shore normal, and C is the wave phase speed. From Snell’s law, the ratio
sin θ/C remains constant, so the deep water dispersion relation was used to simplify
the expression.

On a longshore-uniform beach, the ratio of forced rotational fluctuating longshore
velocity to mean longshore velocity then becomes

O

(
v

V

)
= O

(
δk

δf

cf

m
cot θ0

)
. (4.2)
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Figure 4. Ratio of maximum mean longshore current to amplitude of maximum fluctuating
longshore current using base case (see figure 2, and (3.8), (3.16)–(3.17), and (4.3)) with friction
coefficient cf = 0.005 and mixing parameter P = 0.1.

Thus, the ratio of fluctuating to mean longshore velocity is, perhaps surprisingly,
predicted to not depend on wave height or frequency, but instead on details of the
wave spectrum, bathymetry and frictional characteristics, and deep water wave angle.
The lack of dependence on wave height and period may make it fairly robust for
predictive purposes, with the notable complication of the friction factor.

Figure 4 shows the ratio of maximum fluctuating longshore current to maximum
mean current for the base case, but with changing deep water wave angle. Quantitative
values for the maximum longshore current use cf = 0.005, and mixing coefficient
P = 0.1 from Longuet-Higgins (1970b), so that

Vmax = R
5πmHb

2cf

fp sin θ0 (4.3)

where R = 0.5173 for P = 0.1. This solution neglects differences between still water
level and mean water level as they are small, which seems reasonable in this case.
For low angles and thus weak longshore currents, the unsteady fluctuations are
relatively large, as expected, but mean currents dominate for large deep water angles.
This solution is extremely sensitive to the friction factor, which is still not easily
predictable a priori, so there is considerable uncertainty.

5. Discussion and conclusions
Overall, rotational fluctuating velocities can be significant for some cases, but

insignificant in others. On longshore-uniform beaches, fluctuating longshore velocities
are significantly larger than those in the cross-shore direction. The location of
maximum fluctuating cross-shore and longshore velocities appears sensitive to the
detailed distribution of vorticity, but will be somewhere in the surf zone.

Three relatively common situations appear likely to force strong rotational velocity
fluctuations:

(a) locally generated storm waves,
(b) bi-directional spectra, and
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(c) small-scale (O(100 m)), large-amplitude, longshore topographic variations com-
bined with long-period swell waves.
The common case of swell waves on a longshore-uniform beach is likely to force
relatively small rotational fluctuations.

The ratio of fluctuating longshore velocity to mean longshore velocity is found to
depend not on wave height or frequency, but on details of the spectrum, mean angle,
and bathymetry.

A strong difference is predicted between rotational fluctuations on longshore-
uniform and longshore-varying beaches, with short-period wind seas producing larger
fluctuations on longshore-uniform beaches, and long-period swell being more effective
on longshore-varying beaches.

Causes of errors include neglect of frictional dissipation and simplifications of
the rate of generation of circulation. Nonlinear processes would also modify this
simple solution, and would almost certainly promote instabilities of these unsteady
circulation cells. However, the relative importance of these instabilities compared
to shear instabilities of the mean current (Bowen & Holman 1989) remains to be
determined.

A. B.K. was supported in this work by the National Oceanographic Partnership
Program and by Florida Sea Grant.
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